首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4892篇
  免费   430篇
  2023年   45篇
  2022年   37篇
  2021年   157篇
  2020年   121篇
  2019年   137篇
  2018年   163篇
  2017年   138篇
  2016年   243篇
  2015年   300篇
  2014年   321篇
  2013年   374篇
  2012年   445篇
  2011年   421篇
  2010年   277篇
  2009年   241篇
  2008年   288篇
  2007年   265篇
  2006年   245篇
  2005年   227篇
  2004年   175篇
  2003年   170篇
  2002年   158篇
  2001年   43篇
  2000年   35篇
  1999年   35篇
  1998年   39篇
  1997年   25篇
  1996年   25篇
  1995年   18篇
  1994年   20篇
  1993年   15篇
  1992年   8篇
  1991年   18篇
  1990年   5篇
  1989年   11篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1976年   7篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
排序方式: 共有5322条查询结果,搜索用时 671 毫秒
51.
52.
Musashi comprises an evolutionarily conserved family of RNA‐binding proteins (RBP) that regulate cell fate decisions during embryonic development and play key roles in the maintenance of self‐renewal and differentiation of stem cells and adult tissues. More recently, several studies have shown that any dysregulation of MSI1 and MSI2 can lead to cellular dysfunctions promoting tissue instability and tumorigenesis. Moreover, several reports have characterized many molecular interactions between members of the Musashi family with ligands and receptors of the signaling pathways responsible for controlling normal embryonic development: Notch, Transforming Growth Factor Beta (TGF‐β), Wingless (Wnt) and Hedgehog Signaling (Hh); all of which, when altered, are strongly associated with cancer onset and progression, especially in pediatric tumors. In this context, the present review aims to compile possible cross‐talks between Musashi proteins and members of the above cited molecular pathways for which dysregulation plays important roles during carcinogenesis and may be modulated by these RBP.  相似文献   
53.
54.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
55.
Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in‐depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.  相似文献   
56.
Coral reef fish larvae are tiny, exceedingly numerous, and hard to track. They are also highly capable, equipped with swimming and sensory abilities that may influence their dispersal trajectories. Despite the importance of larval input to the dynamics of a population, we remain reliant on indirect insights to the processes influencing larval behavior and transport. Here, we used genetic data (300 independent single nucleotide polymorphisms) derived from a light trap sample of a single recruitment event of Dascyllus abudafur in the Red Sea (N = 168 settlers). We analyzed the genetic composition of the larvae and assessed whether kinship among these was significantly different from random as evidence for cohesive dispersal during the larval phase. We used Monte Carlo simulations of similar‐sized recruitment cohorts to compare the expected kinship composition relative to our empirical data. The high number of siblings within the empirical cohort strongly suggests cohesive dispersal among larvae. This work highlights the utility of kinship analysis as a means of inferring dynamics during the pelagic larval phase.  相似文献   
57.
The EMBL-EBI Complex Portal is a knowledgebase of macromolecular complexes providing persistent stable identifiers. Entries are linked to literature evidence and provide details of complex membership, function, structure and complex-specific Gene Ontology annotations. Data are freely available and downloadable in HUPO-PSI community standards and missing entries can be requested for curation. In collaboration with Saccharomyces Genome Database and UniProt, the yeast complexome, a compendium of all known heteromeric assemblies from the model organism Saccharomyces cerevisiae, was curated. This expansion of knowledge and scope has led to a 50% increase in curated complexes compared to the previously published dataset, CYC2008. The yeast complexome is used as a reference resource for the analysis of complexes from large-scale experiments. Our analysis showed that genes coding for proteins in complexes tend to have more genetic interactions, are co-expressed with more genes, are more multifunctional, localize more often in the nucleus, and are more often involved in nucleic acid-related metabolic processes and processes where large machineries are the predominant functional drivers. A comparison to genetic interactions showed that about 40% of expanded co-complex pairs also have genetic interactions, suggesting strong functional links between complex members.  相似文献   
58.
The vascular cellular adhesion molecule-1 (VCAM-1) is a protein that canonically participates in the adhesion and transmigration of leukocytes to the interstitium during inflammation. VCAM-1 expression, together with soluble VCAM-1 (sVCAM-1) induced by the shedding of VCAM-1 by metalloproteinases, have been proposed as biomarkers in immunological diseases, cancer, autoimmune myocarditis, and as predictors of mortality and morbidity in patients with chronic heart failure (HF), endothelial injury in patients with coronary artery disease, and arrhythmias. This revision aims to discuss the role of sVCAM-1 as a biomarker to predict the occurrence, development, and preservation of cardiovascular disease.  相似文献   
59.

Selenium is an essential element in human and animal metabolism integrated into the catalytic site of glutathione peroxidase (GPX1), an antioxidant enzyme that protects cells from damage caused by reactive oxygen species (ROS). Oxidative stress refers the imbalance between ROS and antioxidant defense systems. It generates alterations of DNA, proteins and lipid peroxidation. The imbalance occurs particularly during ischemia and lack of postmortem perfusion. This mechanism is of relevance in transplant organs, affecting their survival. The aim of this research is to evaluate the effect of seleno-methionine (SeMet) as a protective agent against postmortem ischemia injury in transplant organs. Wistar rats were orally administered with SeMet. After sacrifice, liver, heart and kidney samples were collected at different postmortem intervals (PMIs). SeMet administration produced a significant increase of Se concentration in the liver (65%, p?<?0.001), heart (40%, p?<?0.01) and kidneys (45%, p?<?0.05). Levels of the oxidative stress marker malondialdehyde (MDA) decreased significantly compared to control in the heart (0.21?±?0.04 vs. 0.12?±?0.02 mmol g?1) and kidneys (0.41?±?0.02 vs. 0.24?±?0.03 mmol g?1) in a PMI of 1–12 h (p?<?0.01). After SeMet administration for 21 days, a significant increase in GPX1 activity was observed in the liver (80%, p?<?0.001), kidneys (74%, p?<?0.01) and heart (35%, p?<?0.05). SeMet administration to rats significantly decreased the oxidative stress in the heart, liver and kidneys of rats generated by postmortem ischemia.

  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号